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Abstract

Model-based predictive control approaches can be successfully applied to the tra-
jectory tracking of wheeled mobile-robot applications if the process nonlinearity is
considered, if real-time performance is achieved and if assumptions made in the
control-law design are met when applied to a particular process. In this paper, con-
tinuous tracking-error model-based predictive control is presented. The controller’s
optimal actions are obtained from an explicit solution of the optimization criteria,
which enables fast real-time applications. Due to its design in continuous time, its
usage is not limited to the uniform sampling restrictions of a host computer, as is
usually the case in discrete time design. Therefore, better performance is obtained
in applications with non-uniform sampling, which is natural in many situations due
to imperfect sensors, mismatched clocks, nondeterministic control delays or because
of the unknown time of the pre-processing. The controller-design parameters are in-
sensitive to the sampling time period, which contributes to simpler applications and
grater robustness of the controller.

Key words: Continuous Model-based Predictive control; Trajectory tracking;
Mobile robot

1 Introduction

Wheeled-robot motion control is important in practical applications as well
as being an important research problem. Different control laws were proposed
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for driving mobile robots with differential kinematics. The motion control of
such robots can be carried out as a point stabilization [4], [19] or as trajectory
tracking [1],[24], [11], [18]. Trajectory tracking appears to be more natural for
mobile-robot drives with nonholonomic constraints.

A very common and frequently used nonlinear controller design is that which
first appears in [6], [23],[18]. It is designed in a Lyapunov frame and guarantee
asymptotic stability. This controller structure has motivated many researchers
to include their modifications, such as an adaptive upgrade in [20], a fuzzy ex-
tension in [21], an input-output linearisation in [7], a saturation-constraint
feedback in [10], a combined control and observer design in [15], and many
others. In [18] a dynamic feedback linearization for a flat system output is
described, which results in a more robust design and does not require any
orientation measurements. In [3] a Lyapunov analysis is used to design a non-
linear control law that is asymptotically stable and overcomes the common
discontinuity problem in the orientation error. Control of many commercial
robots can be done considering kinematic model only because they already
have internal control handling robot dynamics. If this is not the case a dy-
namic compensator [24] should be implemented before applying kinematic
control.

Approaches of nonlinear MPC (Model Predictive Control) for tracking in mo-
bile robots are rare [9], with the earliest papers being [17], [16] and [27]. In
these applications the computational burden was prohibitive in fast, real-time
applications. Later, several real-time implementations followed in [9] and [28]
where optimized numeric search approaches are applied to solve the MPC
optimization problem. An analytical solution of the MPC problem for mobile
robots is proposed in [14], which enables fast and simple real-time implementa-
tions. Several model predictive approaches apply lineralization to obtain com-
putationally more efficient solutions that are valid near the operating point.
If environment disturbances are high a nonlinear predictive approaches [27] or
robust solutions should be used. Robust predictive approach which can handle
several disturbances that usually can appear in outdoor applications is sug-
gested by [30]. In these model predictive approaches a discretization of the
nonlinear or linearized system model is required, resulting in a discrete con-
trol law. However, the discretization to the required periodic sampling is only
approximate, especially if the period of the sampling is not exact. Therefore,
it introduces some systematic error in the control-law calculation. Discrete
control approaches used on continuous-time plant lose the information of in-
tersample operation of continuous process [33]. A study how variable sampling
period due to random delays influences stability of mobile robot control is per-
formed in [32]. Control of nonlinear system under variable sampling have been
investigated in [34] applying a fuzzy control approach.

In this work a continuous model-based predictive control is proposed. The
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control law has a similar structure to the discrete MPC in [14] and differ-
ers mainly in terms of a design that is made in continuous space. The main
novelties of the proposed approach, with respect to our previously published
approach [14], are as follows. The predictive control law is designed in a con-
tinuous space, which means that discretization of the tracking-error dynamics
is not needed. Better, or at least equal, trajectory tracking results are obtained
because the error due to the discretization is not present in the control law.
A grater robustness of the control-law design parameters, such as the time
horizon and the desired control law dynamics, to sampling-time variations
is obtained. The design parameters are insensitive to the used sample time,
which is not the case with the discrete design. This means that continuous
model predictive control can be realized in non-equidistant sampling cases
where better trajectory-tracking results are obtained compared to the results
of discrete model predictive controls.

The rest of the paper is organized as follows. In Section 2 the continuous model
predictive control law is derived for a mobile robot with differential kinematics.
Comparisons of the simulation results between the proposed continuous model
predictive control and the discrete model predictive control are given in Section
3. The experimental results and comparisons are presented in Section 4, and
the conclusions are drawn at the end.

2 Trajectory-tracking problem

In this section a continuous tracking-error model-based control algorithm is
explained, which is applied to the mobile robot with differential drive kine-
matics as follows

q̇(t) =

⎡
⎢⎢⎢⎢⎢⎣

cos θ(t) 0

sin θ(t) 0

0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ v(t)

ω(t)

⎤
⎥⎦ (1)

where v(t) and ω(t) are the tangential and angular velocities of the mobile
robot, q is [x, y, θ] and q̇ is their derivative. Obtained control results in the
following can be extrapolated to other mobile platforms such as very often
used Ackermann type. Model (1) can be applied to Ackermann using trans-

formations v(t) = vs(t) cos α(t) and ω(t) = vs(t)
d

sin α(t) where α is the steering
angle, vs velocity of the steering wheel and d the distance among the steering
and the rear wheels [29].

In the trajectory-tracking problem the control task is to follow the given refer-
ence trajectory. This can be solved by a nonlinear feedback or a smooth linear
feedback designed for a linearized system around the trajectory ([4], [13],[22]
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and [23]). To achieve asymptotic stability of the nonholonomic system (1) a
time-varying feedback is needed [2].

The reference trajectory xr(t), yr(t) is achievable for a differential drive if it
is twice differentiable and does not come to a stop (ẋ2

r(t) + ẏ2
r(t) �=0). If the

latter is true, the feedforward controls can be calculated from the reference
trajectory. The tangential feedforward velocity vr(t) is obtained by

vr(t) =
(
ẋ2

r(t) + ẏ2
r(t)

) 1
2 (2)

and the angular feedforward velocity ωr(t) is obtained from time derivative

of the tangent orientation of the reference trajectory θr(t) = arctan ẏr(t)
ẋr(t)

as
follows

ωr(t) =
ẋr(t)ÿr(t) − ẏr(t)ẍr(t)

ẋ2
r(t) + ẏ2

r(t)
(3)

The feedforward control action is only applicable if the robot is perfectly
described by the kinematic model and if no disturbances and initial posture
errors are present. In practice, the feedforward control action is supplemented
by a suitable feedback control law.

2.1 State tracking-error kinematics

The state trajectory tracking error e(t) defined in the robot coordinate frame
is obtained using

e(t) =

⎡
⎢⎢⎢⎢⎢⎣

ex(t)

ey(t)

eθ(t)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ (qr(t) − q(t)) (4)

From the kinematics (1) state tracking error (4) and supposing that the imag-
inary reference robot has the same kinematics (1), the following model results

ė(t) =

⎡
⎢⎢⎢⎢⎢⎣

cos eθ(t) 0

sin eθ(t) 0

0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣vr(t)

ωr(t)

⎤
⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1 ey(t)

0 −ex(t)

0 −1

⎤
⎥⎥⎥⎥⎥⎦ u(t) (5)

where u(t) = [v(t) ω(t)]T stands for the control vector. Robot control is
obtained by combining the feedforward and feedback control actions

u(t) = uf (t) + ub(t) (6)
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where uf (t) = [vr(t) cos eθ(t) ωr(t)]
T is the feedforward part and ub(t) =

[vb(t) ωb(t)]
T is the feedback part.

By inserting relation (6) into Eq. (5), the nonlinear state tracking-error kine-
matics is obtained as follows

ė(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 ωr(t) 0

−ωr(t) 0 vr(t)
sin eθ(t)

eθ(t)

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ e +

⎡
⎢⎢⎢⎢⎢⎣
−1 ey(t)

0 −ex(t)

0 −1

⎤
⎥⎥⎥⎥⎥⎦ ub(t) (7)

For the purposes of continuous model-predictive control a linearization of (7)
around the reference trajectory (desired operating point: ex(t) = ey(t) =
eθ(t) = 0, vb(t) = ωb(t) = 0) is performed to obtain a linear continuous
model

ė(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 ωr(t) 0

−ωr(t) 0 vr(t)

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ e +

⎡
⎢⎢⎢⎢⎢⎣
−1 0

0 0

0 −1

⎤
⎥⎥⎥⎥⎥⎦ ub(t) (8)

whose compact form is defined as follows ė(t) = A(t)e(t) + Bub(t). This com-
pact linear form will be used in the subsequent text to derive explicit control
law. Note, however that linear model is only valid in vicinity of the operating
point (zero error in (8)) and the control performance using linear model may
not be as expected in case of large control errors. Here controller that forces
error towards zero is designed therefore the linear model is acceptable choice.

2.1.1 Prediction of errors

The prediction of a certain error component is obtained with a Taylor series
expansion as follows

ei(t + τ) = ei(t) +
ne∑

k=1

e
(k)
i (t)

τ k

k!
, i = 1, ..., n, (9)

where e
(k)
i (t) defines the k − th time derivative of the variable ei(t) as follows

e
(k)
i (t) =

dkei(t)

dtk
. (10)

and ne defines the order of the prediction, i.e., the order of the derivatives in
the series expansion and τ defines the time of the prediction. The error of this
approximation depends on the order ne and the time of the prediction τ .
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Eq. (9) is then rewritten in the form as follows

ei(t + τ) = ei(t) +

[
τ

τ 2

2!
· · · τne

ne!

] [
e
(1)
i (t) e

(2)
i (t) · · · e(ne)

i (t)
]T

, (11)

The k − th derivative of the error vector is then similarly, taking into account
Eq. (8), written in the following form

e(k)(t) = Ane(t)e(t) +
[
Ane−1(t)B Ane−2(t)B · · · B

]
u∗

b(t) (12)

and u∗
b(t) stands for u∗

b(t) =
[
ub(t)

T u
(1)
b (t)T . . . u

(ne−1)
b (t)T

]T
and has the

dimension of m · ne × 1 and e(t) has the dimension n× 1, where m stands for
the input-vector dimension.

By taking into account Eq. (9) and (12), the prediction of all the error variables
will be given as follows

e(t + τ) = e(t) + Te

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(1)

e(2)

...

e(ne)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

where Te stands for the following n × n · ne matrix

Te =

[
τIn

τ 2

2!
In · · · τne

ne!
In

]
(14)

and In stands for the n × n identity matrix.

Eq. (13) can be further, by taking into account Eq. (12), developed as follows

e(t + τ) = e(t) + TeF (t)e(t) + TeH(t)u∗
b(t), (15)

where F (t) stands for the matrix of dimension n · ne × n, defined as

F (t) =
[
A(t) A2(t) · · · Ane(t)

]T
(16)

and H(t) stands for the matrix of dimension n · ne × m · ne, defined as
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H(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 0

A(t)B B
...

...
...

...
. . .

...

Ane−1(t)B Ane−2(t)B · · · B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

2.2 The reference-error model

The dynamics of the reference trajectory tracking is involved with the reference-
error model, which is defined as follows

ėr(t) = Are(t) (18)

where Ar stands for the reference-error transition matrix defined by Ar =
ar · In, where ar < 0. This means that the nature of the trajectory tracking is
defined by matrix Ar with the dimension n× n and diagonal elements, which
defines the dynamics of the reference trajectory. At the current time instant
er(t) = e(t), while the future reference-error prediction must exponentially
decrease to zero. This leads to a prediction of the reference error for the time
τ ahead (similarly as in 15), which is defined as

er(t + τ) = e(t) + TeFre(t), (19)

where Fr stands for

Fr =
[
Ar A2

r · · · Ane
r

]T
(20)

2.3 The control law

The criterion function that is optimized to obtain the control law is now
written in the matrix form as follows

J =
∫ Th

0

[
εT Qε + ΔuT

b (τ)RΔub(τ)
]
dτ. (21)

where Δub(τ) stands for Δub(τ) = ub(t + τ) − ub(t) and ε stands for ε =
er(t + τ)− e(t + τ). The prediction of the control variable ub(t + τ) is defined
as follows

ub(t + τ) = ub(t) + Tuu
∗
b (22)
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where Tu is defined as

Tu =

[
τIm

τ 2

2!
Im · · · τne

ne!
Im

]
(23)

and Im stands for the m×m identity matrix. The matrix Q defines the matrix
of dimension n × n for the weighting of the tracking errors, R stands for the
m × m matrix to weight the change of the input variable u(t), and Th is
prediction horizon time where the criterion is calculated.

Taking into account Eq. (15) and (19), integrating the criterion function and
then calculating the derivative according to u∗

b the following is obtained

dJ
du∗

b
= −HT TQFre + HT TQFe + HT T T

QFe−
−HT TQFre + 2HT TQHu∗

b + 2TRu∗
b

(24)

where the shorter notation H = H(t), F = F (t) is used and where TQ and TR

are the following constant positive definite matrices of dimensions n ·ne×n ·ne

and m · ne × m · ne

TQ =
∫ Th

0
Te

T QTedτ (25)

TR =
∫ Th

0
Tu

T RTudτ (26)

where Te is defined as given in Eq. 14 and Tu is given in Eq. 23.

The matrices TQ and TR are symmetric and constant matrices that are inde-
pendent of time.

A necessary condition the optimality is given by third Euler-Lagrangove equa-
tion as follows

∂J
∂u∗

b

= 0 , (27)

and the sufficient condition for the optimal solution is given by the Legandre-
Clebsch equation as follows

∂2J
∂u∗

b
2 = 2TR ≥ 0 , (28)

which follows from the fact that the matrix TR is positive definite.

The optimal control law is then given as follows

8



u∗
b(t) =

(
H(t)T TQH(t) + TR

)−1
H(t)T TQ (Fr − F (t)) e(t), (29)

The optimal control variable ub(t) is given by the first m rows of the vector
u∗

b(t).

2.4 The order of the control variable

The control law is given by the control variable u∗
b(t), which has the dimension

m · ne × 1. This means that the expansion of the control variable u(t + τ) is
of the same order ne as the expansion of the errors e(t + τ). Or, the series
expansion of the control variable is given by ne − 1 derivatives. This could
lead to the singularity problem in the case of Eq. (29), where the inverse of
the expression H(t)T TQH(t) + TR is calculated. This problem is solved by
introducing the control-variable order nu. This means that the Taylor series
expansion of the control variable is limited to nu derivatives as follows: u∗

b(t) =[
ub(t)

T u
(1)
b (t)T . . . u

(nu)
b (t)T

]T
and has the dimension of m · (nu + 1) × 1.

This also leads to the change of the matrix H(t), which is now of dimension
n · ne × m · (nu + 1), defined as

H(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 0

AB B
...

...
...

...
. . .

...

Ane(t)B Ane−1(t)B · · · Ane−nu(t)B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

and the change of Tu, which is now defined as follows

Tu =

[
τIm

τ 2

2!
Im · · · τnu

nu!
Im

]
(31)

and Im stands for the m×m identity matrix. This also means that the matrix
TR now has dimension m · (nu + 1) × m · (nu + 1). The control variable order
nu should be smaller than the error variable order ne.

3 Validation of the continuous MPC performance

In the following the performance and robustness of the proposed control law
is validated by various simulations, considering the periodic and aperiodic
sampling intervals, the noise in the sampling-period duration and the nonde-
terministic control delay.
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The obtained results are compared to the discrete MPC (DMPC) realization
[14], with the main purpose being to illustrate in which situations the use of
the proposed continuous MPC (CMPC) is beneficial over the discrete design
and also when it is not.

The reference trajectory for all the experiments is defined by

xr(t) = 1.1 + 0.7 sin
(

2πt

30

)
, yr(t) = 0.9 + 0.7 sin

(
4πt

30

)

where t ∈ [0, 30]s. The robot starts with an initial state error according to the
reference trajectory, its starting pose is q = [1.1 0.8 0]T . The robot velocities
and wheel accelerations are limited as follows: vMAX = 1 m/s, ωMAX = 15
and aMAX = 3 m/s2.

The design parameters for the continuous MPC are as follows:

Q =

⎡
⎢⎢⎢⎢⎢⎣

2 0 0

0 10 0

0 0 0.4

⎤
⎥⎥⎥⎥⎥⎦ , R =

⎡
⎢⎣ 0.001 0

0 0.001

⎤
⎥⎦ , Ar =

⎡
⎢⎢⎢⎢⎢⎣
−13 0 0

0 −13 0

0 0 −13

⎤
⎥⎥⎥⎥⎥⎦

The order of the prediction is ne = 3, the order of the control variable is
nu = 2, the prediction horizon time Th = 4Ts and the diagonal element in the
reference trajectory matrix is ar = −13.

Additional parameters needed for the discrete MPC algorithm’s realization
that give a comparable performance to the continuous realization are as follows

Adr = earTs

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0.65 0 0

0 0.65 0

0 0 0.65

⎤
⎥⎥⎥⎥⎥⎦

where the control horizon h = 4 and the sampling period of the control loop
Ts = 0.033s.

3.1 Performance simulation under ideal conditions

In this simulation we suppose that the process inputs are changed at regular
sampling intervals Ts and no noise is present in the controlled system.

The obtained results (trajectory tracking and velocity inputs) of the contin-
uous MPC and the discrete MPC realization are shown in Fig. 1. Both have
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very similar performance, because of the periodic sampling and the appropri-
ate sampling period selection.
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ω
 [r
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]

Fig. 1. Trajectory tracking of continuous (thin) and discrete (thick) model-predictive
controller under ideal sampling. First figure: robot path (—), reference path (- -),
second figure: tangential velocity v (- -) and angular velocity ω (—) .

3.2 Robustness of the design parameters to the sampling period

An important advantage of the continuous control approach is the insensitivity
of the design parameters to the sampling time. In the discrete case the design
parameters of the control law depend on the sampling time. This, however, is
not the case in the continuous approach. To clarify this claim the simulated
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sampling period is now changed to Ts = 0.066s, which is two times longer than
in the previous example (Figs. 1. The process inputs are changed at regular
sampling intervals Ts = 0.066s, but the design parameters (Ar, Q, R, Th) for
the control law remain the same as in the previous example, so they are valid
for a 0.033s sampling period.

The results of the continuous and discrete MPC are shown in Fig. 2. The
results of continuous realization are very much the same as in Section 3.1,
while the performance of the discrete case is worse. The CMPC is derived
in continuous space and therefore the discretization of the continuous system
model is not needed, as it is in the discrete-case design. Consequentially, the
design parameters of the CMPC are also not dependent on the sampling period
Ts. Therefore, the CMPC is more robust to the sampling-period deviations
(aperiodic sampling). And also in the case of the periodic sampling, the tuning
of the controller parameters is not required if sampling period is changed.
While DMPC controller parameters need to be tuned again when sampling
time is changed.

3.3 Performance under variable sampling

Usually, the elements of the control loop (sensors, actuators, controller) are
event-driven and ideal periodic sampling is rarely available [26]. However, the
statistically expected value of the sampling period Ts must fulfil the criterion
0.2 ≤ ωTs ≤ 0.6, as stated in [25], where ω is the closed-loop natural frequency.

The true sampling time TsTrue is therefore nondeterministic, which in this
simulation is modelled by the normal probability density function

p (TsTrue) =
1√

2πσ2
s

e
− 1

2

(
(TsTrue−Ts)

σs

)2

where Ts = 0.033s is the mean value and σs = 0.01s is the standard devi-
ation. So, the process inputs are changed at time intervals TsTrue, which is
nondeterministic.

The results of the continuous MPC and discrete MPC are shown in Fig. 3.
Due to the sample-time variation during the simulation (see Fig. 4), the noise
in the control signals from the discrete MPC appears. This happens because
the discrete control is not performed for regular periodic time samples and the
error due to the discretization is then propagated over the whole control-law
algorithm.
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Fig. 2. Trajectory tracking of continuous (thin) and discrete (thick) model-predictive
controller at double sampling time (Ts = 0.066). First figure: robot path (—),
reference path (- -), second figure: tangential velocity v (- -) and angular velocity ω
(—) .

3.4 Performance under variable sampling and control delay

In practice, a control delay is present, which can again be modelled as a
nondeterministic process. The sensor processing, controller and actuators are
usually event-driven parts of the closed-loop system. So, the sensor information
for the control law starts processing as soon as the raw data from the physical
sensor is available, which can be assumed to be at regular sampling intervals Ts

or at nondeterministic intervals TsTrue (usually with quite a low uncertainty).
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Fig. 3. Trajectory tracking of continuous (thin) and discrete (thick) model-predictive
controller at variable sampling. First figure: robot path (—), reference path (- -),
second figure: tangential velocity v (- -) and angular velocity ω (—) .

However, the raw sensor data need to be processed (e.g., SLAM in mobile
robotics) to produce the required sensor information for the control part. This
sensor processing time is time-varying and contributes to the overall time
delay. The control algorithm starts when the processed sensor information
is available and calculates the process input after some time delay, which is
again time-varying. In mobile robotics the controller can typically have many
tasks with different complexities such as path planning, obstacle avoidance,
reference tracking and not all of them are always active. Finally, after the
process input is calculated, the actuator produces the required input to the
process, where some communication delay may be present. The overall control
delay Td is therefore nondeterministic as illustrated in Fig. 5
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Fig. 4. Sample-time variation during the simulation.
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Td

Fig. 5. Variable sampling demonstration. Raw sensor data are obtained at sample
intervals TsTrue, which triggers the processing algorithms to extract the required
control information from the raw sensor data. The latter triggers the control algo-
rithms and finally the control variables are communicated to the process actuators.
All the mentioned algorithms and the communication cause a control delay Td,
which is usually nondeterministic as well as instants of the control inputs (actua-
tion period Ta).

The results of the continuous and discrete MPC realization are shown in Fig.
6. From the obtained results in Fig. 6 better performance is observed for the
continuous MPC, where less noise appears in the control signal. The control
delay disturbs both control designs, which is seen from the noise in the control
signals. However, due to the variable actuation period Ta the performance of
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Fig. 6. Trajectory tracking of continuous (thin) and discrete (thick) model-predictive
controller at variable sampling and control delay. First figure: robot path (—),
reference path (- -), second figure: tangential velocity v (- -) and angular velocity ω
(—) .

the continuous controller realization is better as it has a faster response and
lower noise at the control inputs. The variable period Ta is shown in Fig. 7
and results from a nondeterministic sensor sampling and control delay.

In general, the noise at the control inputs is propagated from the process
output noise and also from the noise in the sampling period and control delay.
The faster the controller dynamics, the larger the control noise is. However,
from Fig. 6 a faster response of continuous MPC is observed at a lower control
noise than in discrete MPC.
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Fig. 7. Sample time of actuation Ta varies due to the nondeterministic sensor sam-
pling and the nondeterministic process delay.

Similar conclusions can also be made for the different reference trajectories.
Example of a discontinues reference trajectory, which are usually the output
of path planing approaches [31], is given in Fig. 8.

3.5 Quality index comparison

A comparison of the performance for the simulated scenarios from Subsections
3.1, 3.2, 3.3 and 3.4 is given in Table 1. The performance is evaluated by the

root-sum-square of the position error (RSSx =
√∑

e2
x, RSSy =

√∑
e2

y) and

the orientation error (RSSθ =
√∑

e2
θ), by the norm of the root-sum-square of

the position errors (NSS =
√

(RSS2
x + RSS2

y)) from the reference trajectory

and by the standard deviations of the control inputs (σv, σω).

In first line of Table 1 an ideal situation is compared (Subsection 3.1) from
which it is clear that there is no noticeable difference in performance between
the continuous (CMPC) and the discrete (DMPC) realizations.

In the second line of Table 1 the robustness of the control design parameters to
the sampling period is tested (Subsection 3.2). The parameters optimized for
the sampling period Ts = 0.033 s are used on the simulation with the sampling
period Ts = 0.066 s. It is clear that the performance (pose tracking and control
signals) of the discrete realization performs much worse than the continuous
one. It has to be noted that the RSS and NSS values of the second line and
the first line could not be compared due to the different number of sampling
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Fig. 8. Trajectory tracking with the continuous model-predictive controller at vari-
able sampling and control delay. First figure: robot path (—), reference path (- -),
second figure: tangential velocity v (- -) and angular velocity ω (—) .

instants for the same duration of the simulation.

In the third line of Table 1 a variable sampling is simulated (Section 3.3). The
main difference can be observed in the larger control-inputs noise standard
deviation of the DMPC, while the CMPC performs similarly to the in ideal
case. In the DMPC the noise in the control signals is caused by the noise in
the sampling time, where the sampling instants are not periodic. Due to the
closed-loop operation the noise in the sampling time mostly affects the control
inputs, while the tracking errors are similar for the CMPC and DMPC.

In the fourth line of Table 1 a variable sampling and variable control delay
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experiment method RSSx RSSy RSSθ NSS σv σω

[m] [m] [rad] [m] [m/s] [rad/s]

correct sampling CMPC 0.033 0.024 0.55 0.04 0.002 0.008

Ts = 0.033 DMPC 0.073 0.017 1.24 0.07 0.002 0.008

double sampling CMPC 0.021 0.025 0.24 0.035 0.003 0.016

Ts = 0.066 DMPC 0.068 0.030 1.07 0.075 0.005 0.018

variable sampling CMPC 0.110 0.210 93.6 0.23 0.002 0.009

TsTrue DMPC 0.123 0.214 94.9 0.25 0.059 0.064

variable TsTrue CMPC 0.112 0.233 85.9 0.26 0.024 0.052

and var. delay DMPC 0.130 0.269 93.2 0.30 0.086 0.099
Table 1
Performance of continuous and discrete control for the simulated scenarios evalu-
ated by the root-sum-square of the pose errors and the standard deviations of the
controls.

is simulated. The delay affects the performance of both control designs. The
variable delay also contributes to a larger variance of the time between the
successive instants of the control-inputs update and, therefore increases the
control-inputs noise in the DMPC.

4 Experimental results

In the experiments the proposed continuous model-based predictive control
is compared to the discrete predictive control presented in [14]. Two mobile
robot platforms are used in experiments, a smaller two-wheeled mobile robot
and four-wheeled Pioneer 3AT mobile robot (see Fig. 9). Both robot motion
can be approximated by differential kinematics but with different parameters.
As already explained in section 2 (comment of Eq. (1)) the controller can also
be applied to Ackermann robot type using simple velocities transformations.
This covers majority of wheeled mobile robots used in practice.

The small robot is designed for robot soccer competitions where speed, robust-
ness and accuracy are needed. It fits in a cube with a 7.5-cm side and weighs 0.5
kg. The robot pose is estimated with an image sensor and a computer-vision
algorithm running at Ts = 0.033 s sampling. The maximum allowed tangential
velocity and angular velocity were vMAX = 1m/s and ωMAX = 15rad/s, while
the maximum allowed tangential wheel acceleration was aMAX = 3 m/s2. Pi-
oneer 3AT is all-purpose outdoor mobile robot used mainly for research. It
uses laser range finder running with 10Hz (Ts = 0.1 s) for its localization.
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Fig. 9. Small mobile robot (left) and Pioneer 3AT robot (right) used in experiments.

Maximum allowed velocities are set to vMAX = 0.8 m/s and ωMAX = 5 rad/s.

The optimal continuous feedback control law is derived in (29) and by taking
the first two rows of (HT TQH + TR)−1HT TQ(Fr −F ) the gain matrix Kc(t) is
defined for the applied control as follows

ub(t) = Kc(t)ē(t), (32)

where ē(t) is the undelayed system-tracking error, which is not available in
practice due to the different sources of system delay. The main delay source
of the smaller robot is an image-based sensor delay where the current camera
image needs to be precessed to obtain the robot pose. The other sources caus-
ing an additional system delay are: the control algorithm computational time
and the communication delay. The overall delay is nondeterministic, where
TD = 2Ts is its estimated mean value. Delay of the Pioneer robot is less than
Ts and is not compensated in the control.

The undelayed tracking error ē(t) can be estimated from the delayed system
output ed(t) = e(t−Td) and the simulated system outputs em(t) and em(t−Td)
using the Smith predictor scheme as follows

ē(t) = ed(t) + em(t) − em(t − Td), (33)

which in the frequency domain reads

ē(s) = ed(s) + (sI3 − A)−1Bu(s) − (sI3 − A)−1Be−sTdu(s), (34)

inserting (34) into the control law(32) defines the control input for the delayed
system as follows
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ub(s) = Kcē(s) =

= Kced(s) + Kc(sI3 − A)−1B(I2 − e−sTd)ub(s)
(35)

where Ij is the identity matrix of dimension j. The optimal controller transfer
function for the delayed system then reads

C(s) =
ub(s)

yd(s)
=

(
I2 − Kc(sI3 − A)−1B(I2 − e−sTd)

)−1
Kc, (36)

The same reference-trajectory and control-design parameters as selected in
simulation section are used for the smaller robot. While the reference trajec-
tory of the Pioneer robot is xr(t) = 1.4 sin

(
2πt
50

)
, yr(t) = 1.4 sin

(
4πt
50

)
and

design parameters for CMPC are: Th = 4Ts

Q =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0 5 0

0 0 0.2

⎤
⎥⎥⎥⎥⎥⎦ , R =

⎡
⎢⎣ 0.3 0

0 0.3

⎤
⎥⎦ , Ar =

⎡
⎢⎢⎢⎢⎢⎣
−3 0 0

0 −3 0

0 0 −3

⎤
⎥⎥⎥⎥⎥⎦

The control parameters for both control laws (CMPC and DMPC) are selected
equivalently to have the same performance.

The trajectory-tracking results (for the small robot), obtained using the pro-
posed continuous model-predictive controller (CMPC) and comparison to dis-
crete model-predictive controller (DMPC), are shown in Fig. 10 The trajectory-
tracking results of both approaches are of approximately similar quality. Both
result in good tracking in the presence of the system delay and noisy sensor
data, with a standard deviation of approximately 2 mm for position and 1◦ for
orientation. During the experiments sensor disturbances, such as the wrong
pose estimation (outliers; 2% of all measurements) and some camera distortion
(perspective and radial distortion) are also present.

A closer comparison of trajectories in Fig. 10 reveals slightly better track-
ing results for the CMPC during the initial transition. This is also seen in
the comparison of the quality indexes in the first row of table Table 2. The
main difference between both approaches is observed by comparing velocity
inputs.A much higher jitter in the tangential and angular velocity is present
in the discrete model predictive control, which is also seen from the standard
deviations of the control variables in the first row of table Table 2.The lat-
ter statement was observed in experiment as a much smoother motion of the
robot platform in the case of the CMPC.

More detailed validation is done for the Pioneer robot using constant sampling,
double sampling and variable sampling as follows in Figs. 11- 13 and in table
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Fig. 10. Trajectory tracking experiment of the small robot with the CMPC (thin)
and DMPC (thick). at variable sampling and control delay. First figure: robot path
(—), reference path (- -), second figure: tangential velocity v (- -) and angular
velocity ω (—).

2. From figures and table of performances the same conclusions can be drawn
as in section 3. Continuous and discrete approaches are equivalent at regular
sampling time where actual sampling time is the same as the one selected
in the tuning phase (see Fig. 11). If sampling time is changed (in Fig. 12
is doubled so Ts = 0.2 s) and the control design parameters are not adapted
(they are valid for Ts = 0.1 s) then the performance od DMPC becomes worse
while the CMPC performance is not affected noticeably. Similarly if sampling
time is changing randomly then the performance of DMPC becomes worse
while the CMPC is insensitive to the sampling time period variation (in Fig.
13 sample is lost with 50% probability).
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Fig. 11. Trajectory tracking experiment of Pioneer robot with the CMPC (thin) and
DMPC (thick) at regular sampling time Ts = 0.1 s. First figure: robot path (—),
reference path (- -), second figure: tangential velocity v (- -) and angular velocity ω
(—).

From the above comparisons the CMPC approach gives better results, which
is to be expected because of the varying sampling times, mostly due to the
variable control delay. The CMPC algorithm is derived in continuous space
and therefore the discretization of the continuous system tracking model (7) is
not needed, as it is in the case for the DMPC. This statement is also consistent
with the simulation analysis made.

In the DMPC the tracking-error model discretization according to the desired
sample time is made. Because the actual sampling time instants are nondeter-
ministic, the error due to the discretization is then propagated over the whole
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Fig. 12. Trajectory tracking experiment of Pioneer robot with the CMPC (thin) and
DMPC (thick) at double sampling time (Ts = 0.2 s) and control design parameters
tuned to Ts = 0.1 s. First figure: robot path (—), reference path (- -), second figure:
tangential velocity v (- -) and angular velocity ω (—).

control-law algorithm, while in the CMPC the continuous control signal is
only evaluated in actual discrete time samples at the end of each control-loop
iteration before sending the velocity commands to the robot platform.

5 Conclusion

The continuous model-predictive trajectory-tracking control of a mobile robot
is presented in this paper. The proposed control law minimizes the quadratic
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Fig. 13. Trajectory tracking experiment of Pioneer robot with the CMPC (thin) and
DMPC (thick) at variable sampling time where sample is lost with 50% probability.
First figure: robot path (—), reference path (- -), second figure: tangential velocity
v (- -) and angular velocity ω (—).

cost function consisting of tracking errors and control effort as is also the
case in the discrete version. The solution to the control is derived analyti-
cally, which enables fast, real-time implementations. The proposed continuous
model-predictive control was validated by simulation and also on a real mobile
robot.

Continuous model-predictive control design has, in ideal situations, similar
performance to the equivalent discrete model-predictive control. However, in
general situations the assumption of having a uniform sampling time and a
deterministic control delay is not always realistic. It has been shown that a con-
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experiment method RSSx RSSy RSSθ NSS σv σω

[m] [m] [rad] [m] [m/s] [rad/s]

small robot

sampling CMPC 0.31 0.83 3.27 0.88 0.032 0.53

Ts = 0.033 DMPC 0.32 0.90 3.88 0.95 0.055 0.78

Pioneer robot

CMPC 0.66 1.24 1.14 1.41 0.039 0.038

Ts = 0.1 DMPC 0.99 1.50 1.11 0.95 0.051 0.105

Pioneer robot

CMPC 0.53 0.97 1.04 1.11 0.027 0.036

Ts = 0.2 DMPC 8.35 5.88 4.46 10.21 0.315 1.383

Pioneer robot

CMPC 0.61 1.1 1.01 1.26 0.041 0.042

variable Ts DMPC 3.10 4.67 3.48 5.61 0.258 0.812
Table 2
Performance of CMPC and DMPC for experiments on real robots evaluated by the
root-sum-square of the pose errors and the standard deviations of the controls.

tinuous design gives better results in cases where the sampling-time instants
are not deterministically periodic. An important advantage of the proposed
continuous model predictive control is also the better robustness of its control-
law design parameters according to the sampling period. The change in the
sampling period does not affect the control quality.
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